159 research outputs found

    LHC phenomenology of dark matter with a color-octet partner

    Get PDF
    Colored dark sectors where the dark matter particle is accompanied by colored partners have recently attracted theoretical and phenomenological interest. We explore the possibility that the dark sector consists of the dark matter particle and a color-octet partner, where the interaction with the Standard Model is governed by an effective operator involving gluons. The resulting interactions resemble the color analogues of electric and magnetic dipole moments. Although many phenomenological features of this kind of model only depend on the group representation of the partner under SU(3)c, we point out that interesting collider signatures such as R-hadrons are indeed controlled by the interaction operator between the dark and visible sector. We perform a study of the current constraints and future reach of LHC searches, where the complementarity between different possible signals is highlighted and exploited

    Vacuum stability and perturbativity of SU(3) scalars

    Get PDF
    We calculate the vacuum stability conditions and renormalisation group equations for the extensions of standard model with a higher colour multiplet scalar up to the representation 1 5 0 that leaves the strong interaction asymptotically free. In order to find the vacuum stability conditions, we calculate the orbit spaces for the self-couplings of the higher multiplets, which for the representations 1 5 and 1 5 0 of SU(3)(c) are highly complicated. However, if the scalar potential is linear in orbit space variables, it is sufficient to know the convex hull of the orbit space. Knowledge of the orbit spaces also facilitates the minimisation of the potentials. In contrast to the self-couplings of other multiplets, we find that the scalar quartic couplings of the representations 3 and 8 walk rather than run, remaining nearly constant and perturbative over a vast energy range. We describe the conditions for walking couplings using a schematic model. With these technical results at hand we revise earlier results of generation of new scales with large SU(3) c scalar multiplets. Our results are easily extendable to models of new physics with additional SU(3) or SU(N) gauge symmetries.Peer reviewe

    Displaced vertices from pseudo-Dirac dark matter

    Get PDF
    Displaced vertices are relatively unusual signatures for dark matter searches at the LHC. We revisit the model of pseudo-Dirac dark matter (pDDM), which can accommodate the correct relic density, evade direct detection constraints, and generically provide observable collider signatures in the form of displaced vertices. We use this model as a benchmark to illustrate the general techniques involved in the analysis, the complementarity between monojet and displaced vertex searches, and provide a comprehensive study of the current bounds and prospective reach

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search

    Get PDF
    The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given

    Dark Matter in 3D

    Get PDF
    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.Comment: 36 pages, 13 figure

    Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope

    Full text link
    Active galaxies, especially blazars, are among the most promising neutrino source candidates. To date, ANTARES searches for these objects considered GeV-TeV Îł\gamma-ray bright blazars. Here, a statistically complete radio-bright blazar sample is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 years of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and by a complementary likelihood-based approach. The resulting post-trial pp-value is 3.0%3.0\% (2.2σ2.2\sigma in the two-sided convention), possibly indicating a correlation. Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a mean of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pre-trial significance above 3σ3\sigma indicates a p=1.4%p=1.4\% (2.5σ2.5\sigma in the two-sided convention) detection of a time-variable neutrino flux. An \textit{a posteriori} investigation reveals an intriguing temporal coincidence of neutrino, radio, and Îł\gamma-ray flares of the J0242+1101 blazar at a p=0.5%p=0.5\% (2.9σ2.9\sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars

    Search for neutrino counterparts to the gravitational wave sources from O3 catalogues with the ANTARES detector

    Full text link
    Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies >100 >100\,GeV, thanks to the inclusion of both track-like events (mainly induced by ΜΌ\nu_\mu charged-current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within ±500 \pm 500\,s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,ÎœE_{\rm tot, \nu} and on the fraction of the total energy budget fÎœ=Etot,Îœ/Eradf_\nu = E_{\rm tot, \nu}/E_{\rm rad} emitted as neutrinos of all flavours are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star - black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,Îœ<4.0×1053 E_{\rm tot, \nu} < 4.0 \times 10^{53}\,erg and fÎœ<0.15f_\nu < 0.15 (respectively, Etot,Îœ<3.2×1053 E_{\rm tot, \nu} < 3.2 \times 10^{53}\,erg and fÎœ<0.88f_\nu < 0.88) for E−2E^{-2} spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.Comment: 13 pages, 4 figure

    Probing invisible neutrino decay with KM3NeT-ORCA

    Get PDF
    In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state Îœ3\nu_3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/α3=τ3/m3<1801/\alpha_3=\tau_3/m_3 < 180~ps/eV\mathrm{ps/eV} at 90%90\% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for Ξ23\theta_{23}, Δm312\Delta m^2_{31} and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte
    • 

    corecore